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Abstract

An increasing number of researchers in many ar-
eas are becoming interested in the application of
the partially observable Markov decision process
(pomdp) model to problems with hidden state.
This model can account for both state transition
and observation uncertainty. The majority of re-
cent research interest in the pomdp model has
been in the artificial intelligence community and
as such, has been applied in a limited range of
domains. The main purpose of this paper is show
the wider applicability of the model by way of sur-
veying the potential application areas for pomdps.

Introduction

Markov decision process models (mdps) have proven to
be useful in a variety of sequential planning applications
where it is crucial to account for uncertainty in the pro-
cess (Puterman 1994). The success of the application
of mdp can be attributed to the existence of efficient
algorithms for finding optimal solutions for mdp mod-
els (Puterman 1994).

The partially observable mdp model (pomdp) gener-
alizes the mdp model to allow for even more forms of
uncertainty to be accounted for in the process. How-
ever, the computational complexity of algorithms for
optimally solving these models has mostly confined the
interest in these models to the research journals (Pa-
padimitriou & Tsitsiklis 1987).

Recently, the research community has shown increas-
ing interest in looking for more efficient algorithms for
solving pomdps, which has naturally led to explor-
ing various forms of approximate solution techniques.
Since approximations by nature involve trade-offs, guid-
ing applications are crucial for determining how these
trade-offs should be made. Making trade-offs simply for
their mathematical or computational convenience does
not always translate into algorithms that are useful.

Aside from the need for applications to guide algo-
rithm development, the recent advances in pomdp al-
gorithms has pushed the state-of-the-art to the point
where they may be or could soon be usefully deployed
in some real-world settings. These improvements range

from simple heuristics (?) to approximate forms of dy-
namic programming (?) to tighter upper and lower
bounds for search heuristics (?).

This paper surveys some of the application areas
where pomdp models can be applied. They range from
smaller problems where the current technology may be
sufficient to large-scale problems that are well beyond
the range of the existing algorithms. Our grouping
of the application areas is somewhat arbitrary due to
the overlapping nature of the problems that need to be
solved in the various domains.

POMDP Model
Before discussing the specific application areas, we
briefly present the basic form of the pomdp model. The
pomdp model we consider consists of the following:

• a finite set of states, S;

• a finite set of actions, A;

• a finite set of observations, Z;

• a state transition function, τ : S ×A → Π(S), where
Π(·) is a probability distribution over some finite set;

• an observation function o : S ×A → Π(Z);

• an immediate reward function r : S ×A → R.

The state set represents all the possible underlying
states the process can be in, though this state is not
directly observable. The action set is all the available
control choices at each point in time. The observation
set consists of all the possible observations that the pro-
cess can emit. The state transition function encodes the
uncertainty in the process state evolution, while the
observation function relates the process outputs (ob-
servations) to the true underlying state of the process.
Finally, the reward function gives the immediate util-
ity for performing an action in each of the underlying
process states.

We want to use this model to derive a control policy
that will yield the greatest amount of utility over some
number of decision steps. Since there is not space to
include the details of the model, theory and algorithms
we refer the reader to other works (Smallwood & Sondik
1973; Lovejoy 1991; White 1991; Cassandra, Kaelbling,



& Littman 1994). This coarse definition will suffice to
allow us to explain how the various domains presented
can be modeled as pomdps.

Industrial Applications

Machine Maintenance
We begin our discussion of applications with domain
of machine maintenance. A machine in this context
could be any piece of mechanical equipment which re-
quires periodic maintenance due to deterioration of its
internal components over time. Although the machine
can be dismantled and each part inspected to deter-
mine the full internal state of the machine, this requires
an expenditure of time and personnel while rendering
the machine unproductive for the duration of the in-
spection. For this application, we would like to obtain
an inspection/replacement policy that either minimizes
the operating costs or maximizes the production capac-
ity of the machine.

The states for a pomdp model is the internal state
of the components of the machine. This could be on a
component-by-component basis, or some more abstract
description of the machine’s internal state. the actions
of the model could correspond to performing mainte-
nance, replacing components, replacing the machine,
continue operating the machine or inspection. There
could be a number of differnt inspection types which
could vary both in their cost and their effectiveness.

The observations of the pomdp model could incorpo-
rate both the performance of the machine and the var-
ious outcomes that each inspection action would yield.
The pomdp model is particularly applicable to these
problems because the production and inspection obser-
vations are only probabilistically related to the internal
states. For example, there are many reasons why a
manufacturing machine could produce a faulty product
even though its internal parts are functioning properly.
Also, the least expensive inspection techniques are usu-
ally the least thorough.

In the general case, a control policy would de-
pend upon the observations received at each point in
time. Some of the earliest work using the pomdp

model concerned themselves with machine mainte-
nance problems (Eckles 1968; Pollock 1970; Ross 1971;
Smallwood & Sondik 1973; Pierskalla & Voelker 1976;
Rosenfeld 1976; White 1977; 1979).

Structural Inspection
Closely related to the machine maintenance application
are structural inspection applications. These would
include inspection and maintenance of paved roads,
bridges, buildings, aircraft parts, etc (Ellis, Jiang, &
Corotis 1995). Over time, the materials themselves or
the critical joining components can deteriorate.

Similar to the machine maintenance application, the
states would correspond to the internal composition of
the parts/materials of interest. Here actions would con-

sist of various inspection options as well as replacement
or reinforcement choices.

Unlike the machine maintenance examples, structural
components are not easily dismantled. This causes less
than optimal inspection conditions and contributes to
the uncertainty in the inspection results. Effective con-
trol policies in these domains are particularly impor-
tant, since structural failures here can involve the loss
of life, rather than merely a reduction in revenue.

Elevator Control Policies
Although not life-critical, good control policies for
systems of elevators is another application area for
pomdps (Crites 1996). The states of the model, in this
case, would be the position and direction of the eleva-
tors and the number and location of passengers waiting
to be serviced. The actions consist of the various choices
for where to send the individual elevators, which floors
they should stop at, and which floors should they pass.

Typical elevator systems will have two directional
buttons at each floor and floor-call buttons inside each
elevator. The selections of these buttons become the
observations available to make decisions. Because these
do not provide enough information to determine the
number of passengers, or their exact destinations, the
system is partially observable. We could reduce the
amount of partial observability by adding more but-
tons, extra sensing hardware, etc. to provide more spe-
cific information. However, this incurs additional costs
and although it reduces the observation uncertainty, it
does not eliminate it. The only way to get a completely
observable system would be to mandate that every pas-
senger indicate their exact destination; hardly a realis-
tic or friendly system.

Fishery Industry
The population of various types of marine life in a
given area is never known with certainty. Observa-
tions are made which are probabilistically related to
the true population (Lane 1989). Controlling the pop-
ulation of fish is important in the fishery industry, so
that a proper balance of near-term and long-term ob-
jectives are reached. Actions available can include re-
stocking, imposing fishing bans, changing fishing limits,
etc. With a pomdp model of the population growth, the
effects of the various actions on the population, and the
relative accuracies of their sampling methods, a model
can be developed and a policy can be computed to help
guide the decisions of the agencies responsible for main-
taining this delicate balance.

Scientific Applications

Autonomous Robots
Autonomous and semi-autonomous robots are useful in
a variety of hazardous or difficult to access environ-
ments, including:

• interplanetary rovers,



• deep-space navigation,

• bomb disposal,

• land-mine clearing,

• toxic waste clean-up,

• radioactive material handling,

• deep-ocean exploration,

• sewage/drainage network inspection and repair,

• etc.

For many of these, tele-operated solutions are cur-
rently used. However, if communication is difficult or
impossible, or if the time-lag on the communication re-
sponse is significant, tele-operated solutions are cum-
bersome and time-consuming. The more autonomy the
robot has, the more it can accomplish and the less bur-
den there is on the operators. Even where tele-operated
solutions are feasible, added autonomy can make the
robot more productive, easier to operate and less prone
to human error.

No matter the quality or quantity of sensing hard-
ware deployed on the robot, from the robot’s point of
view, it will have a horrendously incomplete view of its
surroundings. With this ubiquitous partial observabil-
ity, the pomdp model can provide the formal basis for
autonomous behavior in these domains, where:

• the states are the robots location, surroundings and
internal state,

• the actions are the available actuators,

• the observations are the outputs of the sensing equip-
ment, and

• the immediate reward function encodes the robot’s
general goals.

However, successful application of pomdps to this
domain is probably the most challenging of all the
application areas and there currently exists a wide
gap between the current state-of-the-art in pomdp re-
search and what is required for a successful autonomous
robotic application.

Deriving control rules for robots using pomdp mod-
els seems to be best done using models that are at a
higher level of abstraction than what the robot actu-
ators and sensors provide (Simmons & Koenig 1995;
Cassandra, Kaelbling, & Kurien 1996; Nourbakhsh,
Powers, & Birchfield Summer 1995). Another possi-
bility for applying pomdp models closer to the hard-
ware level would be to use a hierarchical arrangement
of pomdp models, though this approach is mostly un-
explored.

Behavioral Ecology
One can use decision models in the study of the behav-
ior of organisms (Mangel & Clark 1988). As mentioned
in the discussion about autonomous robots, no matter
the quantity or quality of the sensors, an autonomous

agent (i.e., the organism) must still deal with only par-
tial information about its environment.

The premise of this work is that the organism is be-
having optimally, given the internal model of the world
it is using. The task is to understand exactly what this
model is, or to understand the behavior of the organism
by identifying the elements the organism chooses to use
in its decisions.1 The researcher will build a model of
the states, actions, observations and rewards it believes
are important to the organism, compute the optimal
policy and then compare the behavior predicted by this
policy with the actual behavior of the organism. Us-
ing discrepancies, alternate theories are explored, the
model is refined, and the process is repeated. This it-
erative process leads to a better understanding of the
organism’s behavior and its interaction with the envi-
ronment.

Machine Vision

Decision process models have been applied to machine
vision problems, particularly as it applies to visual at-
tention (Bandera et al. 1996). A large body of the
work in machine vision uses static images, with uni-
form resolutions over the entire image and results in
algorithms which are computational demanding. To al-
leviate some of the problems with these approaches,
taking their cue from nature, researchers have experi-
mented with the idea of having a small, high resolution
area (i.e., a fovea) with a larger, lower resolution area
surrounding it. This reduced area now means that it is
important to make good decisions about where to focus
the attention of the fovea.

The low resolution area, not to mention all the areas
for which no part of the visual system is focused, leads
naturally to partial observability of the surrounding en-
vironment. Because building a pomdp model powerful
enough to be used by a general visual system is cur-
rently highly impractical. pomdp models are best em-
ployed in special purpose visual systems, where the do-
main has been restricted.

One such special-purpose system exists in the area of
gesture recognition (Darrell & Pentland 1996). Here the
visual system is capable of tracking the head and hands
of a person, where the camera movements between them
define the actions in the model. The states of the model
correspond to the states of the person or environment;
e.g., their hand position, facial expression, etc. Since
the visual system cannot focus on all parts of the per-
son, its observations consist of the feedback it gets for
the particular area it is currently focused on. The goal
is to recognize a particular pattern of gestures or ex-
pressions.

1We take no position on what it means for an organism
to “decide”.



Business Applications

Network Troubleshooting
As a network troubleshooting example, consider
a large, interconnected electrical distribution net-
work (Thiebeaux et al. 1996). When a component fails
or a circuit breaker trips, large areas of the population
can be affected. Restoring electricity to as many peo-
ple as quickly as possible is a crucial task that currently
takes a high degree of skill and experience. Sending a
team out in the field to discover and fix the problem is
both time and cost intensive.

The interconnected nature of the network and the
presence of remotely controlled switches with remotely
accessible circuit-breaker position sensors can allow
both reconfiguration and troubling-shooting of the net-
work from the main control station. In fact, the two
are intimately tied together; by setting different config-
urations of the network and monitoring exactly which
circuit-breakers are tripped, the controller can localize
the faulty component remotely before sending a repair
team. However, aside from wanting to locate the fail-
ure quickly, there is the competing goal of maintaining
service to as many customers as possible.

The partial observability in this domain comes from
the limited number of circuit-breaker position sensors
and the fact that they do not always provide accu-
rate information. The states are the possible configu-
rations of the network and the possible states of all the
components in the network. The actions of the model
come from the network of remotely operated electri-
cal switches. The immediate reward would have to be
some qualitative estimate of the costs for maintaining
customers and the benefits of locating the fault quickly.

Many other types of networks share similar charac-
teristics with the electrical distribution networks; e.g.,
phone networks, computer networks, etc. They are
prone to failures and it is crucial to reconfigure the net-
work or re-route messages while trying to isolate and
repair the faulty component. With communication net-
works, even without faulty components, near or higher
than capacity demand can stress a system so that mak-
ing good routing decisions becomes a crucial goal. Al-
though the details of the model will differ from system
to system, complete observability of the state of the
entire network is a rare commodity.

Distributed Database Queries
With the explosive expansion of computer networks and
the amount of data available on them, more and more
researchers are developing distributed information re-
trieval systems (Bayardo et al. 1997). Since an in-
formation request is essentially a database query, an
important component of such systems is the manner in
which queries are processed. Control policies for dis-
tributed queries are useful for locating the appropriate
sources of the information as quickly or as cheaply as
possible. The situation gets more interesting when one
considers the information could be duplicated at multi-

ple sources. Naturally, decision process models provide
a good formalism for developing query distribution con-
trol policies (Segall 1976).

Like the network examples previously presented, it
is not feasible to maintain this global system state, re-
quiring either too much hardware or too much network
traffic. However, the network traffic as a whole and/or
isolated packets do provide some observations about the
current network state.

For a pomdp model, the state would be the states
of the information sources (up, down, lightly loaded,
heavily loaded, etc.) and the states of the network com-
ponents. The actions would be the various information
sources where the query could be submitted. The ob-
servations could be results of previous queries, general
network traffic, or specific network messages. The im-
mediate rewards could range from costs for accessing in-
formation sources to preferences over the response times
for the query results.

Marketing
Few products have universal applicability and appeal.
Most are targeted toward particular demographics.
Sometimes the target audience is more easily identi-
fied than others, but more often than not it requires
some exploration before a given individual can be iden-
tified as either a potential customer or a waste of a
salesperson’s time. Thus, the person’s state is only par-
tially observable, and it requires specific actions to be
taken and responses noted before the salesperson de-
cides whether to continue or move on. Application of
the pomdp model in this domain, and deriving optimal
policies can result in a more effective use of a company’s
marketing resources.

Building a pomdp model of the internal state of a
customer would seem to be equated to modeling a hu-
man, but it can be made much more rudimentary than
this. At the simplest level, you could have a two state
model: fits-demographics and does-not-fit. More
elaborately you can break the notion of fitting the de-
mographics into a number of related attributes, where
the more attributes of the demographics the person has
the more likely they are to buy the product.

The actions could be questions the salesperson asks
the potential customer, or other any other thing the
salesperson can do that would requires a response from
the customer. The observations are the specific cus-
tomer reactions to the salesperson or simply how the
customer behaves over a period of time. Additionally,
the purchasing history of the individual can also be
viewed as observations about their state. The imme-
diate rewards for the model will naturally be positive
for selling a product and negative for spending time on
people that do not fit the particular demographics.

Even with products that have a more universal ap-
peal, personality types will vary as to what market-
ing techniques are most effective on them. Having a
marketing strategy that can take observations from the
potential customer to tailor the sales pitch to its most



effective form. As companies build up databases of cus-
tomers and customer profiles, the pomdp models can
be refined, honed and made more elaborate over time,
thereby increasing the effectiveness of the marketing.

Another interesting marketing application comes
from looking at the previous problem from the inside
out: when there are a lot of product types and the
company wants to focus their marketing resources on
the products the potential customer would be most in-
terested in.

As a simple examples, consider a Internet-based com-
pany that has many products. The pomdp model used
by the company has states consisting of a number of de-
mographic attributes. The products it sells have been
categorized according to their profit margin and demo-
graphic appeal for each attribute. As customers browse
the company’s web site, the company can monitor the
types of products or pages they seem to be visiting.
They can use these observations to tailor the pages (the
actions of the model), adding related advertisements
and/or links to products and information that matches
the demographics of the individual visiting the site.

Questionnaire Design
Somewhat related to the marketing application, is the
problem of determining the proper sequencing of ques-
tions for a questionnaire where the answers given may
be less than truthful (White 1976). Like the marketing
example, the states correspond to the type of person
being queried. The actions are the specific question set
available, the observations are the person response and
the objective is to get the proper information as defined
by the specific purpose of the questionnaire.

Corporate Policy
Corporate organization and policy are other areas
where pomdps can be applied. From performing in-
ternal audits (Hughes 1977) to cost control in account-
ing (Kaplan 1969), the observed outcomes of the specific
corporate actions will never tell the complete story or
the current state of the organization. Having a model
of the organization allows analysis of the entire struc-
ture while also providing optimal business policies for
maintaining a stable, productive organization.

Military Applications
The military domain provides many rich and varied ap-
plications for pomdps. The world itself is large and
not completely observable. Antagonists expend a lot of
effort to ensure their opposition knows as little about
them as possible. The military must often deal with
both the complications of the world and actions of an-
tagonists at the same time. We highlight a few of the
more obvious applications of pomdps though many oth-
ers exist.

Moving Target Search
Submarine warfare is one of the clearer examples of the
need to search for moving targets, though the prob-

lem of locating mobile missile platforms poses similar
problems (Eagle 1984; Pollock 1970). Knowledge of the
locations of the opposition’s assets is always a crucial
element in military strategy, but the relative stealthi-
ness of submarines makes they particularly difficult to
track.

A pomdp model would have a state space consist-
ing of the possible locations of the opposition’s subma-
rine(s). Periodically, reconnaissance aircraft, satellite
imagery, sonic buoys, surface vessels, etc. may provide
brief observations about the location of a submarine.
The state transitions for the submarine’s subsequent
movements could be based upon terrain, weather, sup-
ply lines, etc. Since the goal is to keep as good an
estimate of its location as possible, the action of the
model are the active measures available to try to detect
the submarine. These could be selection of active vs.
passive sonar, satellite camera repositioning, reconnais-
sance flights, helicopter-based sonar sweeps, etc.

Search and Rescue
Similar to the moving target search, is a search and res-
cue mission. Though there isn’t usually the adversarial
relationship, there is still the need to develop a search
policy, which will be based upon some partial informa-
tion about the location of the object of the search. In
this case, the actions consist of where to deploy the re-
sources so as to maximize the likelihood of finding the
object. Observations would be radio transmissions, re-
ports, results of searches in other areas, etc. Time and
resources being scarce commodities in a search and res-
cue mission could greatly benefit from improved control
policies.

Target Identification
Detecting the difference between an approaching hostile
aircraft and a non-threatening aircraft is not always an
easy task. The mis-classification either way could have
dire consequences. Although radar and radio transmis-
sions can provide some information about aircraft, they
do not always uniquely identify the object, especially
when a hostile aircraft is actively trying to disrupt these
detection systems. The inaccuracies of the sensors and
the uncertainty of the aircraft’s movements makes this
a very compelling application area for pomdps.

In building a pomdp model in this domain, the
states would be some attributes about the approach-
ing aircraft; aircraft type, altitude, friendly vs. enemy,
etc (D’Ambrosio & Fung 1996). The actions here could
include active or passive radar, launching intercept air-
craft or launching surface-to-air missiles. The observa-
tions would be the results of the sensing actions and
perceived outcomes of the other actions.

This domain is particularly interesting because the
selection between active and passive radar involves a
crucial trade-off. On the one hand, active radar will be
more accurate and provide more information. However,
this also makes the location highly visible to the oppo-
sition. Passive radar reduces the chances of having the



location exposed to the opposition, but is more error
prove in identification. By incorporating the relative
level of visibility into the state space, and defining how
each sensor increases the visibility, the optimal pomdp

policy would make the best trade-offs between these
competing goals.

Weapon Allocation
An attack aircraft has a maximum payload it can carry
and policies for how best to use its assets becomes a
crucial element in a confrontation. Although a lot of
planning goes into the exact targets and armaments
needed before an aircraft ever begins its mission, there
would be a great benefit for being able to adjust the
mission in reaction to unfolding events that occur after
the aircraft becomes airborne.

Aside from actually releasing the weapons, aircraft
usually will record the results so that they can later
be analyzed to determine the effectiveness of the attack
and whether or not follow-up missions will be necessary;
i.e. bomb damage assessment (bda).

Consider the situation of an aircraft departing with
two air-to-surface missiles and two targets. After re-
leasing a weapon at the first target and recording the
results, the aircraft would normally proceed to the next
target. However, suppose the first target had a much
higher priority than the second, then if the first weapon
did not produce the desired damage, a better choice
might be for the aircraft to use its second missile on
the first target again.

The recordings taken of the damage are by nature
never totally conclusive, which makes this very much of
a partially observable problem (Yost 1998). By model-
ing the level of damage as states of a pomdp and defin-
ing some rough relationship between the state and the
observations the recording provide, we could derive bet-
ter, more reactive policies that account for the relative
priorities of targets and costs for attacking them.

Social Applications

Education
Somewhat related to the marketing application, is the
development of teaching strategies. The relationship
comes from trying to model the internal mental state
of an individual, only this time, with the more noble
goal of trying to find the best way to teach concepts,
rather than sell products.

Consider the task of trying to teach n concepts to
an individual (Karush & Dear 1967; Smallwood 1971).
In a pomdp formulation, the state of the student could
have a boolean attribute for each of the concepts in-
dicating whether it had been learned or not. The ac-
tions available to the teacher would be various types of
learning techniques for each of the concepts, potentially
with some teaching actions representing an integration
of concepts. The observations in this model would be
the results of tests given periodically. One could even
include the testing as an action choice in the model, so

that testing was done when it would be most beneficial
for the teacher. The goal could be to teach as many of
the concepts in a finite amount of time, or to minimize
the time required to learn all the concepts. If time is
finite, the concepts could be prioritized, which would
be reflected in the immediate reward structure of the
model.

This could even be made more elaborate if you incor-
porate state’s of the student corresponding to the way
they learn best: e.g., tactile, auditory, verbal, etc. The
actions available to the teacher could also be broken
down along this dimension and, as the teaching process
continued, the optimal policy based on the test obser-
vations should steer the action choices to those more
closely matched to their learning style.

Medical Diagnosis
Medical diagnosis, while quite advanced, is still a task
that requires a significant amount of skill and expe-
rience, and which is still prone to errors. The diffi-
cultly for the physician is that the exact internal state of
the patient never completely reveals itself (Hauskrecht
1997). In an attempt to diagnose a patient, the physi-
cian has a number of actions available: conduct lab-
oratory tests, prescribe drug treatments, perform ex-
ploratory surgery or recommend various forms of phys-
ical therapy. Each of these incurs a cost to the patient,
both in monetary units and in terms of health risks.
Additionally, each will result in the physician getting
observations as results of the various actions chosen for
the patient. Here again we see the trade-offs becom-
ing crucial, in this case between the health-risks/costs
of procedures and the accuracy of the information they
provide.

Health Care Policymaking
If one pushes the medical diagnosis problem up from
the level of individuals and physicians to groups of indi-
viduals and policymakers, we see that here too, models
that incorporate partial observability are useful (Small-
wood, Sondik, & Offensend 1971). The states are now
the health states pertaining to individual populations
and the actions are policy decisions such as how much
and where funds should be spent: research, immuniza-
tion programs, educational programs, awareness adver-
tising, etc. Again, observations can be made on the
populations about their health, but this is only proba-
bilistically related to the true underlying state of health.

A crucial trade-off that needs to be made in these
systems is the short-term versus long-term gains that
the different action choices yield. Building models of
such systems and finding optimal policies for them can
greatly help the policy-makers reason about the systems
they are trying to manage.

Limitations
Despite the relatively broad range of application areas
shown in this paper, pomdps do have limitations and



do not easily handle problems with certain character-
istics. In particular, our model assumed finite sets for
the states, actions, observations and required the deci-
sion points to occur at discrete time steps. Although
any continuous space or time can be discretized, this
is not always the best approach for some applications.
Additionally, implicit in all the mdp models is the as-
sumption that the process being modeled actually obeys
the Markov assumption.

The other problem with the pomdp model is that
it is data intensive. It requires that every transition
probability, every observation probability and every im-
mediate reward be specified for each state, action and
observation. The first question is whether or not the
application domain can provide all of this informa-
tion, and the second is more of a user interface issue
about how to provide a means to build such mod-
els. Another research area tries to address the for-
mer issue by using data gathered from observations
or simulations of the process to learn or adjust the
parameters of the model (Koenig & Simmons 1996;
Shatkay & Kaelbling 1997). There are also model-free
techniques for finding control policies for Markov mod-
els (Bertsekas & Tsitsiklis 1996).

The discussion above is mostly concerning the the-
oretical limitations of the model. For most of the
application areas described, the real limitations cur-
rently lie in the representational and computational ar-
eas. In many of the applications discussed, we refer
to representing states as a series of attributes. Most
pomdp algorithms would require every attribute value
combination to be enumerated, which can cause prob-
lems that are conceptually small to require large state
spaces. Since problems are more naturally and eas-
ily specified in this factored, attribute form, a rich re-
search area is to develop effective algorithms that can
use this representation (Draper, Hanks, & Weld 1993;
Boutilier & Poole 1996).

Computationally, finding the optimal policy for a
general pomdp is intractable (?). Approaches to deal-
ing with this are to to be satisfied with less than opti-
mal solutions or to develop algorithms that can exploit
problem characteristics (Littman, Cassandra, & Kael-
bling 1995; Parr & Russell 1995; Zhang & Liu 1996;
1997; Castanon 1997; Hauskrecht 1997; Brafman 1997;
Cassandra 1998). For the latter, applications can help
drive the search for useful characteristics that can be
exploited.
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